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ABSTRACT

The study of singing style is of great interest both for ex-
pressive vocal synthesis and for the musicological analysis
of vocal performances, inciting to a fruitful convergence
between signal processing and musicology. However, for
musicologists, these studies often come up against the ab-
sence of automatic analysis tools for voices recorded in
a musical context, leading to long and tedious manual an-
notation work. This constraint imposes either to limit one-
self to a restricted corpus, or to circumscribe one’s study
to experimental corpora of voices without instrumental ac-
companiment, thus depriving oneself of the unequalled in-
terest that commercial recordings represent, as accompli-
shed artistic works. This article introduces a new protocol
using deep learning techniques to provide musicologists
with powerful tools for the analysis of singing voices, ope-
ning up new perspectives through the automation of the
different steps. We present a complete processing chain
in support of musicological analysis, using neural models
to isolate singing voice, predict its F0, and automatically
align the syllables or notes to the audio (despite the mu-
sical accompaniment). The effectiveness of this approach
is demonstrated by its practical application on two popu-
lar songs. These tools, developed in an ANR project, will
soon be available to the scientific community.

Keywords: musicology, voice, singing style, popular
music, voice alignment, voice processing, deep learning.

RÉSUMÉ

L’étude du style de chant revêt un fort intérêt tant pour la
synthèse vocale expressive que pour l’analyse musicolo-
gique de performances vocales, incitant à une convergence
fructueuse entre traitement du signal et musicologie. Ce-
pendant, pour les musicologues, ces études se heurtent
souvent à l’absence d’outils d’analyse automatique de voix
enregistrées en contexte musical, amenant à un long et
fastidieux travail d’annotation manuelle. Cette contrainte
impose soit de se limiter à un corpus restreint, soit de cir-
conscrire son étude à des corpus expérimentaux de voix
sans accompagnement instrumental, se privant alors de
l’intérêt inégalé que représentent, comme œuvres artis-
tiques abouties, les enregistrements commerciaux. Cet ar-
ticle introduit un protocole inédit utilisant des techniques
d’apprentissage profond pour fournir aux musicologues

des outils performants d’aide à l’analyse des voix chan-
tées, ouvrant, par l’automatisation des différentes étapes,
des perspectives nouvelles. Nous présentons une chaîne
de traitements complète en support à l’analyse musico-
logique, exploitant des modèles neuronaux pour isoler la
voix chantée, prédire sa F0 et automatiquement aligner
les syllabes ou notes à l’audio (malgré l’accompagnement
musical). L’efficacité de cette démarche est demontrée par
son application pratique sur deux chansons populaires. Ces
outils, développés dans le cadre d’un projet ANR, seront
bientôt disponibles pour la communauté scientifique.

Mots-clefs: musicologie, voix, style de chant, musiques
populaires, alignement de voix, traitement de la voix, ap-
prentissage profond.

1. INTRODUCTION

Expressivity is one of the core elements that come into
play when humans communicate with each other. Indeed,
by exploiting all the prosodic resources of the spoken voice
[27] − intonation, stress, paralinguistic effects, etc. − spea-
kers are able to express a wide variety of emotions and
social attitudes [43]. The singing voice, as a vector of
communication, appropriates many of these codes. As a
result, in the 2010s, some musicologists initiated the ap-
plication of paralinguistics, phonostylistics or psycholin-
guistics [37, 30, 18] to vocal performance analysis [26, 6].

Between prosody, paralinguistic impregnations, rheto-
rical procedures and singing techniques (register, timbre,
etc.), singers make use of a rich palette of vocal effects.
This palette contains elements that:

— connect singers to specific groups, relating to a ge-
neric style through conventions allowing the identi-
fication with a “tribe” − e.g., smoothing of registers
and singing formant in classical singing, yodeling
and twang in country music [34], belting in musi-
cals [25], guttural voice in extreme metal [22], etc.;

— make singers unique, relating to a personal style −
e.g., particular vibrato, specific phrasing, intonative
effects, timbre, manner of attacking, sustaining or
ending notes, etc.

These characteristics can operate on a global scale (e.g.,
the roughness of a voice) or appear locally, as empha-
sis. They can be difficult to define, however, for they of-
ten strike a subtle balance between antagonistic entities −



speech and song, harmonicity and noise, pure musicality
and valorization of the text. This is all the more true in
popular music, since its norms and conventions are looser
than in classical music, due, in particular, to the absence of
explicit theorization. The palette of vocal effects is poten-
tially infinite, and even apparent mistakes can be admitted
and deliberately used [8].

Although a well-defined artistic identity implies a cer-
tain amount of coherence, each performance is unique:
choices made according to the needs of the song as well
as the context enact a “mouvance” [29] characteristic of
a music brought about by extemporization [4], the tran-
sience of the moment fortunately fixed by the recording,
which also adds its own layer of complexity. To identify
the style of an artist is thus not only to describe in detail
such or such performance, but also to deduce its potentia-
lities, its virtualities, to understand the general strategies,
the processes at work, and the challenges that they sup-
port.

If the study and the interpretation of stylistic data resul-
ting from the analysis of singing voice in a musical context
can take the most diverse paths according to the discipli-
nary angle chosen (musicological, anthropological, philo-
sophical, cultural, gender studies, etc.), a first stage is of-
ten essential: the description, in the most neutral and ob-
jective way possible, of the sonic materiality of the voice,
as mediated by the recording and, possibly, additional stu-
dio processing (production effects).

The meticulous observation of the vocal phenomenon
enables one to, for example, establish unsuspected paral-
lels between vocal effects or techniques carrying very dif-
ferent meanings according to the generic, cultural and aes-
thetic contexts in which they appear. It is for these rea-
sons that a growing branch of musicology is turning to the
study of spectral representations of sound (sonograms),
following the path traced by a few pioneers of the 1980s
[11]. If we disregard identifiable production effects as such,
and focus on purely vocal effects, the infinite number of
observable phenomena can be abstracted to a limited num-
ber of acoustic parameters, pertaining to pitch, prosody,
and quality (i.e., timbre, see also [24]), which interact to
create a specific vocal delivery [31].

The study of singing style [7], i.e., the production stra-
tegies at play in a singer’s performances, and the palette
of delivery effects that defines their artistic identity, is of
great interest to musicologists, but the modeling of sin-
ging style also has direct applications for the synthesis of
a more expressive and natural-sounding singing voice [2].
This convergence of interests has led to a close collabo-
ration between signal processing and musicology resear-
chers, initiating an unprecedented situation of interaction.

For years, musicologists studying singing performance
have been faced with the absence of tools for automa-
ting the processes of acoustic analysis and annotation of
corpora of voices recorded in a musical context, leading
to long and tedious work of manual annotation (trans-
cription) and synchronization (alignment), either by ear
or through visual spectral representations like sonograms.

If the expert listening of musicologists remains indis-
pensable to supervise both transcription and alignment,
a purely manual system has its limits. It is very time-
consuming, meaning the corpus must either be small, or
an experimental one, comprised of voices recorded wi-
thout instrumental accompaniment, which is of little inter-
est to musicologists interested in the actual musical works
found in commercial recordings. It can also be error-prone
and, in some cases, overly subjective. Thus, relying on au-
tomatic systems for transcription [19] and alignment [40]
can lead to a considerable gain in time, and help in setting
a common base for the musicological community.

In this context, deep learning has found numerous ap-
plications for voice-related tasks yet, to the best of the au-
thors’ knowledge, has not been directly dedicated to such
musicological applications. In this work, taking advan-
tage of the latest improvements in singing voice separa-
tion [10], F0 estimation [3], and voice alignment [16] al-
gorithms based on deep learning, we introduce a complete
pipeline which simplifies tedious analysis steps previously
carried out by hand, and opens new perspectives through
automation. With the intent to share these algorithms with
the community, a companion website is under construc-
tion in the context of the ANR (French National Research
Agency) project Analysis and tRansformation of Singing
style (ARS) 1 .

More specifically, our proposed contributions are:
— A complete pipeline automatically extracting voice

parameters upon state-of-the-art vocals separation,
and aligning the audio with lyrics and notes;

— A coupling between expert transcriptions (lyrics,
notes) and audio features, allowing (computatio-
nal) analyses to be performed not only on symbolic
(pitch, metric position) or acoustic (F0, syllable on-
set and length) data, but across both sets of data to
bridge the semiotic divide identified by [21];

— Case studies illustrating the musicological interest
of our unified pipeline on two popular songs from
different languages and genres;

— A website set up to give access to the tools to the
scientific community 2 .

2. RELATED WORKS

The current project relies on previous research dedi-
cate to the analysis of singing style and its modeling for
the synthesis of expressive singing, carried out within the
framework of the ANR project ChaNTeR 3 , of which one
can find a detailed example of application to Edith PIAF
in the article [9]. As detailed in the complementary paper
[2] and thesis [1], this project was aimed at incorporating
expressivity, intimately related to singing style, in a conca-
tenative synthesis system.

1 . https://ars.ircam.fr/
2 . https://passagesxx-xxi.univ-lyon2.fr/

activites/projets-anr/projet-ars-analyse-et-
transformation-du-style-de-chant-1

3 . Chant Numérique avec contrôle Temps Réel, ANR-13-CORD-
0011, 2011-2017

https://ars.ircam.fr/
https://passagesxx-xxi.univ-lyon2.fr/activites/projets-anr/projet-ars-analyse-et-transformation-du-style-de-chant-1
https://passagesxx-xxi.univ-lyon2.fr/activites/projets-anr/projet-ars-analyse-et-transformation-du-style-de-chant-1
https://passagesxx-xxi.univ-lyon2.fr/activites/projets-anr/projet-ars-analyse-et-transformation-du-style-de-chant-1
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Figure 1. Overview of our complete analysis pipeline involving musicological expertise, deep learning models for the
automation of voice characterization and alignment in order to help musicologists studying singing voice style.

Concretely, the synthesis of a given utterance was achie-
ved by progressively connecting the relevant biphones (i.e.,
two successive phonemes) of a pre-recorded singing data-
set. The desired F0, derived from the score notes, was ap-
plied to each segment. Then, a musicologically-informed
expressive control was developed to counteract the “unna-
tural” effect induced by the concatenations.

Based on extensive analyses of several performances of
a representative corpus of singers illustrating several gene-
ric singing styles, a series of style-defining vocal effects
were identified and described. The musicologist also esta-
blished a series of local contexts to determine correlations
between specific musical situations (pitch and duration of
notes, position in the phrase and in the song structure, etc.)
and the occurrence of the described effects. Decision trees
were created to associate these contexts with each note
in the score. Finally, global contexts were used to further
transform the vocal parameters (e.g., F0, intensity, etc.) in
a consistent and expressive way.

The musicological analysis of the corpus required time-
aligned lyrics and MIDI notes with respect to the audio.
However, at that time, the presence of an instrumental ac-
companiment prevented the use of available systems, de-
signed for solo singing voice. This difficulty could not be
circumvented, as the desire to study iconic singers, such
as Edith PIAF or Jacques BREL, required the use of com-
mercial recordings, for which we did not have access to
the vocal track independently from the full mix. As a re-
sult, the annotations and alignments were done entirely by
hand. This process being very time-consuming, the choice
was made to limit the corpus to 4 songs per artist studied,
which offered sufficient data to obtain convincing results
in the modeling of styles in a reasonable amount of time.

In this work, consequently, one of our key goals is to
greatly simplify these processes and open the way for a
complete and easy-to-use musicological analysis pipeline.

By exploiting recent deep learning models, F0 extrac-
tion is obtained automatically upon high-quality separa-
tion of the voice from the accompaniment, and lyrics and
notes alignments are generated automatically even with
background music present. These unprecedented possibi-
lities open new perspectives for musicology, with the op-
portunity to work systematically on large corpora of re-
cordings, considerably widening its field of investigation.

Because they contain many more instances of each ef-
fect and context, these large corpora allow for a more re-
liable identification of an artist’s style, and facilitate, e.g.,
the search for similarities or voice synthesis opportunities.

3. A PIPELINE FOR SINGING STYLE ANALYSIS

This section presents our proposed pipeline. As shown
in Figure 1, it consists in four main categories with highly
interdependent modules, namely voice characterization,
musicological expertise, voice alignment, and musicolo-
gical exploitations, which are further detailed.

Note that, although the modules are introduced in their
logical order of operation, the pipeline offers musicolo-
gists a more varied set of workflows: the system is flexible
enough to accommodate different perspectives and prac-
tices, as well as multiple musical ontologies (i.e., kinds of
musical works) − see subsection 3.4.

3.1. Voice characterization

The core of any singing or singer analysis system is
the voice itself. In the context of commercial recordings,
the presence of background music is a major problem for
state-of-the-art parameter estimation algorithms and hin-
ders a precise description of the singers’ intonation or in-
tensity contours. Thus, this first step aims to extract the
singing voice from the background music.



3.1.1. Singing voice separation

The state of the art in source separation relies on deep
learning techniques [33]. In our application, the separa-
ted vocals only serve for parameter estimation, such that
a single-channel (mono), 16kHz extraction is sufficient.
From the many proposed neural architectures, we chose
to re-implement the network presented in [10], as it achie-
ved state-of-the-art singing voice extraction quality with a
comparatively small number of parameters.

This model, denoted as MV, has been trained using the
publicly available MUSDB and CCMixter data sets, and
a collection of internal data featuring solo singing voices
and instrumental music including notably instruments not
well covered in the public data sets. During training, the
voice and music samples were randomly mixed and pitch-
shifted following [12, 28]. The final model allows for ef-
ficient vocal signal separation with a very satisfying qua-
lity. It achieves an SDR of 9.2dB for the vocals separated
from the test set of the HQ version of the MUSDB [38]
data set, which compares favourably with state-of-the-art
performances [33]. In inference, separation is faster than
real-time even when running on a CPU on a small laptop.

3.1.2. Parameter extraction

The isolated voice signal is then used to extract sin-
ging voice parameters. Currently, only the fundamental
frequency (F0) and intensity contours are covered.

The F0 estimation algorithm is also a deep neural net-
work MF0 that has been trained using a large data set
of speech signals using an analysis/resynthesis procedure
that allowed the creation of a perfect annotation of the tar-
get F0 contours [3]. Despite having been trained on clean
speech only, this algorithm has recently shown very good
performances for pathological voice signals as well [41].
The F0 estimation has been enhanced with a voice/unvoiced
algorithm forcing the estimated F0 to zero for silent parts,
or segments not dominated by a single voice.

The intensity estimation is performed by means of cal-
culating the root mean average energy of the separated
voice signal over short analysis windows.

As these algorithms are limited to solo vocals, future
works may focus on their robustness to polyphonic music.

3.2. Musicological expert knowledge

Upon characterization of the solo singing voice, a ty-
pical musicological objective is to correlate voice features
with others, such as transcriptions of relevant information,
and emphasize their relationships.

Transcription is a task aiming at predicting a symbolic
sequence from another data representation. In the context
of voice analysis, two transcription tasks are ubiquitous,
highlighting two modalities of utmost importance: text and
meloody. A naive transcription may miss elements and
subtleties that precisely describe the vocal performance −
therefore, expert knowledge and supervision by musicolo-
gists are essential.

play

Audio mix
(sonogram)

Solo singing voice
(sonogram)

melisma

Figure 2. Illustration of the automatic analysis of a me-
lisma: syllable-level alignment only predicts the word
“play” on the full duration of this excerpt, without taking
pitch variation into account − note-level alignment allows
a deeper look into this gesture. See Taylor SWIFT case
study − subsection 4.1.

3.2.1. Lyrics retrieval

For most vocal music today, lyrics are easily available
online or via the album booklet, so that manual transcrip-
tion is rarely required. However, instead of a succession
of words, a syllable-level segmentation of the text is more
relevant as singing notes are held on syllable vowels [39].
In practice, the lyrics rarely match the singing content per-
fectly due to additive onomatopoeia (e.g., “yeah”) or un-
pronounced utterances. Such local irregularities, fortuna-
tely, are not a problem for recent audio-to-text aligners,
which can handle missing or additional syllables [16].

The role of the musicologists in lyrics retrieval is two-
fold: to ensure that the text is coherent and correctly writ-
ten; and to explicitly adapt, whenever necessary, repeated
syllables, missing entries, or onomatopoeia judged perti-
nent (i.e., conveying meaningful interpretative aspects).

3.2.2. Melodic transcription

Melodic transcription consists in determining the notes
performed by the singer in, e.g., musical notation. In op-
position to an F0 extraction, associated with performance
time, a musical score is concerned with symbolic time.

A dedicated algorithm may be used as a first step, pro-
vided that it is robust and able to distinguish notes of the
singing voice from accompaniment notes, to help in the
process. In this paper, transcriptions were done entirely
by musicologists, without recourse to such an algorithm.

A resulting score transcription can include one or se-
veral instances of melisma, i.e., multiple notes sung on
the same syllable (shown in musical notation by slurs).
In this study, musicologists specifically rely on note-level
alignment to complement the syllable alignment in such
cases. An example is depicted in Figure 2. To the best of
the authors’ knowledge, it is the first option proposed to
musicologists for dealing with the automatic analysis of
melisma.



3.3. Voice-to-symbols synchronization

With the audio and symbolic sequences (syllables and
notes) at disposal, an alignment algorithm aims to asso-
ciate each element in the sequences with a time in the au-
dio, corresponding to its onset, a key step to further study
the temporal aspects in singing performances.

3.3.1. CTC-based neural alignment

The alignment models are also deep neural networks,
trained to minimize the Connectionist Temporal Classi-
fication (CTC) [20], a loss function assessing sequence-
to-sequence prediction that does not need aligned training
data. Given a spectral representation of the audio − with
a theoretical time precision δt of 16ms in our setup −,
a CTC-based model outputs, for each frame, a probabi-
lity distribution over an alphabet A of L symbols plus a
non-informative blank token. (See examples in Figure 1.)
These per-frame probabilities can be used to force-align
an audia with a sequence via a CTC variant of VITERBI’s
decoding. The architecture of our acoustic modes (deep
CNN) and the decoding module are the same as [16].

Training is done with the large collection of English
songs with roughly aligned words and notes from the DALI
dataset [32]. The models have the great benefit of being
applicable to all languages sharing the same alphabet A
(although specialized, hence better, on English − see [16])
and across various musical genres irrespective of produc-
tion date, meaning musicologists do not need to adjust pa-
rameters. This work precisely uses the same models on
an American pop song from 2014 and a French chanson
song from 1966. Finally, singing voice separation is not a
mandatory step for running the alignment models, which
was a major technical deadlock imposing manual align-
ments in [9], so that their usage goes beyond our pipeline.

This approach does not outperform the state of the art
[19] but is independent from any domain knowledge [16].

3.3.2. Aligning audio with syllables and notes

Let MV2T denote the voice-to-text (V2T) aligner. The
alphabet A contains all the basic latin characters (a, b,
etc.), digits (0, 1, etc.), and a space token ø for separating
successive syllables, hence L = 37. Although designed
for word-level alignment, the model can also synchronize
syllables, as words and syllables share the same alphabet.
The only difference lies in the decoding step, as there are
more spaces ø between syllables than words.

Let MV2N denote the voice-to-note (V2N) aligner. We
retrieved the F0 annotations in DALI and converted them
into notes that range from C1 to C7 − this is particularly
large for the human voice, but a manual inspection of out-
liers has not been pursued. The alphabet A contains all 12
semitones per octave and a silence token for long pauses
(>500ms in DALI annotations), hence L = 73. It is, to
the best of the authors’ knowledge, the first time that an
end-to-end, CTC-based model addresses note alignment
− while note transcription was tackled [42].

V2T V2N
Playlist50 [16]†

⌞ AAE (ms) 124.2 ± 58.50 232.0 ± 263.6
⌞ MAE (ms) 39.2 ± 14.1 105.1 ± 170.6
⌞ CER (%) 49.1 ± 14.2 039.7 ± 011.2

“Blank Space”
(manual correction)
⌞ AAE (ms) 13.5 ± 40.9 022.5 ± 063.0

† Metrics are averaged over all songs.

Table 1. Voice-to-text (V2T) and voice-to-note (V2N) ali-
gnment evaluations in terms of average (AAE) and median
(MAE) alignment errors and character error rate (CER).

3.3.3. Alignment accuracy

We briefly assess the robustness of our models on the
Playlist50 evaluation set, introduced in [16], in terms of
alignment and transcription, as shown in the Table 1. Re-
sults show that it is more challenging to align notes than
syllables, although overall mean errors remain below the
commonly admitted 300ms perceptive threshold [13]. Ho-
wever, recognition of notes is better than lyrics − but it is
known that a better transcription does not systematically
imply a better alignment in a CTC framework [40]. In-
terestingly, in our “Blank Space” study, exploiting both
alignments (see 4.1), the manual syllable corrections are
below the theoretical precision δt while note alignment,
although once again less stable, is very much acceptable.

3.4. Musicological exploitations

Finally, our proposed protocol allows further musico-
logical studies while offering great flexibility.

The system only expects that symbolic data (text, notes)
can be related to a recording, meaning it works equally
well whether this data is transcribed from the recording or
exists prior to it, as in written vocal music (e.g., art songs),
the study of which is also possible with this pipeline.

Because most modules output files directly and inde-
pendently from one another, musicologists can freely de-
cide which to use and how. One approach, which has been
favored by one of the authors, is to use the data from
each module to repeatedly refine the score transcription,
thus enacting a sort of back and forth between symbolic
and acoustic data. Also, because the data is not tied to a
single working environment, it is available for computa-
tional analysis, as shown in subsection 4.1, which uses a
series of scripts written by the musicologist in the R pro-
gramming language.

The time markers from the alignment files can be be
manually corrected using visualization software, e.g., So-
nic Visualiser 4 or RX 5 − a process much less tedious
than starting from scratch. As for voice parameters, F0 es-
timation curves require close to no manual corrections.

4 . https://www.sonicvisualiser.org
5 . https://www.izotope.com/en/products/rx.html

https://www.sonicvisualiser.org
https://www.izotope.com/en/products/rx.html


4. MUSICOLOGICAL CASE STUDIES: TAYLOR
SWIFT & CHARLES AZNAVOUR

Having introduced our general pipeline, a demonstra-
tion of the whole musicological protocol is proposed via
two case studies, first on Taylor SWIFT’s 2014 hit single
“Blank Space” 6 and then on Charles AZNAVOUR’s “La
Bohème” from 1966 7 . In the first study (SWIFT), tem-
poral data from the alignments is used to perform fine-
grained rhythmic analyses and to investigate the structural
role played by articulation and micro-rhythm. In the se-
cond one (AZNAVOUR), the fundamental frequency esti-
mation is used to study vocal phrasing and rhetorical ef-
fects involving intonation.

4.1. Taylor SWIFT’s “Blank Space”

This song was selected for several reasons: (1) it is (at
time of writing) SWIFT’s second-best charting song, ha-
ving stayed seven non-consecutive weeks at the top of the
Billboard Hot 100, and its analysis may contribute to a
more thorough understanding of what makes a success-
ful song; (2) it, and SWIFT’s songs more generally, have
not yet been the object of much, if any, musicological at-
tention (although see [36]); and (3) it is in standard com-
pound AABA form, but it exhibits somewhat intricate pat-
terning at lower levels of organization, with verse and cho-
rus each articulating two iterations of an srdc 8 structure
[17] in part through shifts in vocal delivery. It thus pre-
sents a prime example of the kind of analytical work affor-
ded to musicologists by the pipeline. The following case
study focuses on the first half of the first verse (eight bars,
from 5:30 to 25:30), a score transcription of which is
given in Figure 3.

This excerpt can be divided into four parts: two fairly
similar segments (sr, from 5:30 to 15:30) and a contras-
ting passage leading to a concluding gesture (dc, from
15:30 to 25:30). Following [23], we may wish to un-
derstand which criteria elicit such a segmentation, espe-
cially when it appears so self-evident.

A typical analysis, focusing mostly on pitch, would
highlight the close resemblance between s and r, which
share a series of two-syllables phrases 9 on F4 followed
by a syncopated descending step-wise motion from A4

back to F4 (with an additional leap from G4 to D4 in s).
They would then be contrasted with the series of short
phrases that make up d, comprised exclusively of large
leaps which also instantiates a hierarchy divorce [35] with
the underlying harmony (C and A over a B♭ chord, and F
and A over a C chord), and the long melisma on “play?”
that defines c.

6 . Words and music by Taylor SWIFT, Max MARTIN et SHELL-
BACK. Reference recording: 1989, Big Machine, 2014.

7 . Words by Jean PLANTE, music by Charles AZNAVOUR. From the
operetta Monsieur Carnaval, 1965. Reference recording: La Bohème,
Barclay, 1966.

8 . Statement, restatement/response, departure, closure.
9 . Following convention, we equate “phrase” with “breath group”.

Comma-like symbols in the transcription indicate the points at which
SWIFT takes a breath.
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Figure 3. Taylor SWIFT, “Blank Space”, measures 3–10.
[Transcription done by Antoine PETIT.]

Although such analysis is relevant, we believe that arti-
culation and micro-rhythm play as much, if not more, of a
role in shaping the form of the excerpt − dimensions that
our proposed pipeline precisely allows us to investigate.

4.1.1. Application of the pipeline to the song

Syllables retrieved from a first score transcription were
synchronized with the audio by infering with the MV2T
model. The syllable alignment was then processed with
an R script to delete the end marker of syllables not fol-
lowed by a rest in the transcription (i.e., when the arti-
culation was heard as legato, meaning the end of the n
syllable and the onset of the n + 1 syllable can be taken
to be identical). The same script was also used to gene-
rate an additional marker for every syllable, which is the
mean of the onset and end time; this marker is meant to ap-
proximate the perceptual center (P-center) of the syllable
(i.e., the moment it is heard as beginning, as opposed to its
acoustic onset − see [14] and [15] for inherent limits on
P-center representation as singular time-points). The pro-
cessed syllable alignment − 121 markers for 50 syllables
− was then imported into RX for manual correction: the
onset and (when present) end markers were corrected vi-
sually using a sonogram (with aural checking when neces-
sary); the P-centers were systematically checked aurally
by converting them to clicks using Sonic Visualiser.

The whole process was completed in roughly over an
hour (i.e., two markers per minute): an acceptable bench-
mark, given that roughly half of the markers require atten-
tive listening upon correction, which can be expected to
decrease with further experience, and a far cry from the
countless hours previously required for this task.

As previously mentioned, the corrected syllable align-
ment was then used to revise the transcription. In particu-
lar, it allowed for a more accurate transcription of pitches
when paired with the automatically-extracted F0. The re-
sulting string of MIDI notes was then synchronized with



s r d c
Non-legato notes

⌞ Number 4 6 10 2
⌞ Proportion (%) 20 46 59 22
⌞ Mean duration (ms) 213 162 161 180

std. dev. (ms) (14.1) (71.5) (84.8) (175)

Table 2. Non-legato notes by subsection in Taylor
SWIFT’s “Blank Space”, measures 3–10.

the audio by infering with the MV2N model, and the note
alignment was processed with another R script to delete
all notes not part of a melisma, as well as the first note of
every melisma (which had already been aligned using the
syllables). The 10 remaining notes were again imported in
RX for manual correction and, because we consider them
to represent P-centers, aurally checked afterwards 10 .

4.1.2. Musicological exploitation

With this timing data at hand − onset, P-center and
end of every note in the excerpt − we are now able to
propose an analysis of how Taylor SWIFT uses articulation
and micro-rhythm to structure her vocals.

Legato articulation, or lack thereof, can be computed
by subtracting the onset time of the n + 1 note with the
end time of the n note. Table 2 displays the number, pro-
portion, and mean duration (with standard deviation) of
non-legato notes by subsection, painting a vivid picture of
form organized through articulation. The excerpt begins
with mostly legato singing, interspersed with a few very
homogeneous silences. SWIFT’s vocals then gradually be-
come more jagged − mostly non-legato, with many ove-
rall shorter, but also much more heterogeneous, silences
− before returning to the initial legato articulation in the
concluding melisma, which is split in two by the longest
silence in the excerpt, at 304ms (almost half of a beat at
96BPM). Granted, this arch-like progression seems fairly
obvious upon listening (especially when it has been expli-
citly pointed out beforehand), but we may very well have
missed it had we not been able to gather accurate timing
data.

Articulation is only part of the story, however. Figure 4
maps the duration of every note (i.e., the difference bet-
ween the P-center of the n + 1 note and that of the n
note, to which is subtracted the length of the intervening
silence, if there is one) to its P-center, with legato articu-
lation shown with connecting lines, and the internal notes
of each melisma (those aligned with the MV2N model)
shown as unfilled dots; the vertical dashed lines corres-
pond to the beginning of the four subsections, and the ho-
rizontal ones to the projected duration of eighth, sixteenth,
and thirty-second notes (the three most frequent symbolic
durations in the transcription) at 96BPM.

10 . Gliding intonations, such as those in d, are heard as a single ges-
ture and are thus not considered as instances of melisma (this hearing is
reflected in the transcription by smaller notes, approximating the initial
or final pitch of the glide, followed by glissando lines).
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Figure 4. Note durations (log-scale) in Taylor SWIFT’s
“Blank Space”, measures 3–10.

s r d c
Mean displacement (ms) 32.6 38.6 27.2 30.5

std. dev. (ms) (38.4) (27.7) (9.82) (29.8)

Table 3. Micro-rhythmic displacements by subsection in
Taylor SWIFT’s “Blank Space”, measures 3–10.

Not all notes last for their projected duration. In parti-
cular, many sixteenth notes appear “uneven”, with the on-
beat one being longer than the off-beat one. Long/Short
subdivision [5] (i.e., swing) is endemic to s and r, where it
affects almost all sixteenth notes, but is absent in d, which
prioritizes straight eighth notes.

We can thus highlight a subtle interplay between two
contrasting local vocal styles: (1) mostly legato, with L/S
(swung) sixteenth notes and step-wise motion (sr and c);
and (2) mostly non-legato, with straight rhythms and large
leaps filled with gliding intonations (d). The more jagged
articulation of r allows SWIFT to smoothly transition from
style (1) to style (2), while the leap of a major sixth cou-
pled with L/S sixteenth notes on “wanna” at the beginning
of c enables the reverse.

These local styles also share a number of characteris-
tics, among which propulsive tendencies [5] in melisma-
tic passages (i.e., the notes are shorter than projected) 11

and lengthened notes when followed by a silence (both of
these can be observed on Figure 4), a lack of vibrato (this
can be observed on the automatically-extracted F0), and
micro-rhythmic displacements of most notes (computed
by subtracting their P-center with their projected onset at
96BPM), which consistently appear about 30ms later than
projected, as shown in Table 3.

11 . Because such propulsive tendencies are independent from the un-
derlying pulse, which does not change, the last note of a melisma must
last longer than projected, as “compensation”.



Thanks to the pipeline streamlining the annotation pro-
cess, this analysis can easily be expanded upon, so that it
encompasses the whole verse/verse-chorus unit/song, etc.,
up to (at least) the level of the album − thus shedding light
on SWIFT’s multifaceted vocal style. The many strategies
discovered during the analysis can then be compared with
other artists’, and linked to, for example, the lyrics (do
the L/S sixteenth notes connote out-of-breathness? do the
few straight sixteenth notes constitute an early “mask-off”
moment for the hysterical character portrayed by SWIFT
in “Blank Space”? etc.).

4.2. Charles AZNAVOUR’s “La Bohème”

We now turn to a second example of musicological
exploitation, on a fundamentally different repertoire that
highlights another facet of the possible uses of the pipe-
line: French chanson, illustrated by an emblematic track
from an equally emblematic artist: “La Bohème”, as sung
by Charles AZNAVOUR in 1966. In addition to being in
another language, the traditional French chanson aesthe-
tic is markedly different from that of Anglo-Saxon pop
music: the text’s primacy, and its vocal enhancement, are
distinctive traits that differentiate it from almost all other
genres.

While articulation and micro-rhythm in the context of a
strict pulse played a central role in defining Taylor SWIFT’s
style, French chanson also emphasizes other dimensions,
such as paralinguistic effects involving the fundamental
frequency. With this song’s nostalgic tone exploiting pa-
thos as its main tool for seducing the listener, the rheto-
rical use of emphatic or euphemistic effects will be the
focus of the following case study, without, however, de-
veloping all their potentialities (rhythmic placement, for
example, will not be touched upon very much).

4.2.1. Application of the pipeline to the song

The first two steps in the pipeline − voice separation
and F0 estimation − give particularly good results with
this song. The separated voice file provides the musicolo-
gist with a working support of sufficient quality for both
aural and visual analysis (including that of timbre, possi-
bly the dimension most affected by the source separation
process, but of which both the harmonic and noisy com-
ponents are preserved). The quality of the source separa-
tion makes it possible to obtain an accurate fundamental
frequency curve with the MF0 model that does not require
manual corrections beyond the occasional removing of the
curve on silences and unvoiced consonants, whereas ma-
nual annotation as it was previously performed on a music
file with accompaniment required between 30 minutes and
1 hour of work per song. Moreover, this automatically-
extracted F0 is more precise than manually tracing the
curve on the sonogram could ever be; it is thus an ana-
lytically reliable time saving method. The marker file re-
sulting from the voice-to-text alignment allows the mu-
sicologist to instantaneously relate the effects heard, and
observed on the sonogram, to the lyrics/syllables.

Figure 5. Verse 1, line 1 from Charles AZNAVOUR’s “La
Bohème”. Score transcription, sonogram, F0 and text ali-
gnment (a = fast flow, intonational instability, and absence
of vibrato; b = sustained note with vibrato on the last syl-
lable of the phrase).

Figure 6. Chorus 3, line 4 from Charles AZNAVOUR’s “La
Bohème”. Score transcription, sonogram, F0 and text ali-
gnment (a = beginning of a note without vibrato; b = ar-
rival of the vibrato; c = vibrato on the note’s whole dura-
tion; d = rolled “r”).

4.2.2. Musicological exploitation

AZNAVOUR’s style is characterized by the coexistence
of two antagonistic, yet complementary, modes of deli-
very: (1) a narrative everyday-speech-like phrasing defi-
ned by a fluctuating intonation, rhythmic irregularity, and
a lack of vibrato; and (2) a lyrical phrasing marked by
sustained notes with vibrato, stable intonation, and rhyth-
mic precision. The first one is shown in Figure 5, with its
constantly rising and falling intonation over step-wise mo-
tion paired with a fast flow of eighth notes, and is found
in verses. The second one appears in verses as well, on
the last syllables of phrases, but is most characteristic of
choruses, where rolled “r”s further pull AZNAVOUR’s de-
livery away from the spoken voice and towards the sin-
ging voice. See Figure 6: the pitch remains stable throu-
ghout the notes’ duration, while vibrato, which is under
very fine control, is brought in gradually on the most mea-
ningful words − an emphatic effect. Consonants are ar-
ticulated and distinct, but are somewhat temporally and
dynamically euphemized, giving the choruses a resolutely
vowel-like character.

While this prosody-based formal structure is typical of
the French chanson genre, it takes on a particular signifi-
cance with AZNAVOUR. An important axis of his perfor-
mance strategy is the pairing of profound musicality (ex-
pressed through intonative and rhythmic precision) with
an apparent economy of means − a sobriety associated
first and foremost with his well-known veiled tone, which
he knew how to make great use of in the service of pathos,
evoking the tragedy of the everyday life closely related to
his songs’ themes.



Figure 7. Synchronization of the 4 iterations of the “la
bohème”-motif from the first chorus of Charles AZNA-
VOUR’s “La Bohème”. Sonogram, F0 curve and text ali-
gnment. The red frame highlights the position of the trill.

Another characteristic element of AZNAVOUR’s singing
style is the presence of vocal ornamentation, more speci-
fically trills and appoggiaturas. “La Bohème” contains, to
varying degrees of subtlety, about 24 such effects, which
are found mostly in the lyrical parts: choruses and last
lines of verses. One notable use of the trill in this song
is to create variations throughout the 16 iterations of the
title-phrase “la bohème”, which appears 4 times par cho-
rus on a single intonative scheme (transposed to different
starting pitches) and rhythmic formula (three quarter notes
followed by a half-note).

Figure 7 shows the first 4 iterations of the “la bohème”-
motif (i.e., those of the first chorus), synchronized in order
to visualize both the distribution of the trill within the ite-
rations and its rhythmic position. The synchronization was
done not according to the onset of the first syllable, but to
the rhythmic pulse of the beat as it materializes in the ins-
trumental accompaniment, allowing the consideration of
possible agogic (i.e., micro-rhythmic) shifts.

5. CONCLUSION

In this paper, we introduced a complete pipeline for the
musicological analysis of singing voice style. From a tech-
nical perspective, deep learning models were used for sin-
ging voice extraction from background music, voice pa-
rameter (F0) estimation, and robust automatic alignment
of both syllables and notes to the audio. Not only does
this pipeline greatly simplify the tedious tasks traditio-
nally done manually by musicologists, but it also offers
practical flexibility, as the two concrete case studies de-
monstrate: (1) text and note alignments allowed investi-
gating articulation and micro-rhythm in a Taylor SWIFT
song (American pop, 2014) ; and (2) F0 curves were ex-
ploited to highlight vocal phrasing and rhetorical effects
involving intonation in a Charles AZNAVOUR song (French
chanson, 1966). More generally, this work paves the way
for future and strong collaborations between musicolo-
gists and deep learning researchers sharing a common in-
terest in singing voice. The tools presented will be made
available to the community in the form of a web interface.
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